PART II. PHYSIOLOGICAL SUBSTRATES OF CONDITIONED FOOD AVersions: Introduction: Physiological Mechanisms in Conditioned Taste Aversions

Log in for access to journal content if you are an NYAS member. 
Note: you will be redirected to www.nyas.org for access.

Login


MARROW

ANNUAL REVIEWS SERIES

TRANSACTIONS of THE NEW YORK ACADEMY OF SCIENCES

THE SCIENCES

Stay Connected
taste aversions, suggesting that cocaine's aversive effects are mediated in part by dopaminergic activity. These findings were discussed in consideration with other evidence implicating DA and other neurotransmitter systems in cocaine-induced CTAs. Introduction When using pharmacological antagonists to assess mechanism in the CTA design, it is important to consider the possibility that administration of the antagonist prior to saccharin and cocaine could impact behavior, sensory and/or learning processes involved in CTA acquisition that might limit any conclusions regarding the ability of the antagonist to affect the drug's aversive effects [see above; 16]. Conditioned food aversion: an adaptive specialisation of learning? IRCS J Med Sci 1980;8:591–4. A dramatic example is Pavlovian conditioned taste aversion, in which sucrose or a similar sweet taste is associatively paired with nausea induced by a LiCl injection (Garcia et al., 1968). The learned aversion changes orofacial reactivity to the paired sweet taste from positive “liking” to negative “disgust” (Grill and Norgren, 1978a; Berridge et al., 1981; Spector et al., 1988). In short, affective orofacial reactions reflect the hedonic impact of a taste stimulus, and so are determined not only by the taste itself, but also by relevant physiological states and Pavlovian associations that inf... Regarding the neural substrates of taste reactivity behaviors, the basic orofacial reactions can be generated by brainstem circuitry alone (Grill and Norgren, 1978c).